Habituation in Learning Vector Quantization

نویسندگان

  • Tamás Geszti
  • István Csabai
چکیده

A modification of Kohonen's Learning Vector Quanti zation is proposed to hand le hard cases of supervised learning with a rugged decision surface or asymmetries in the input dat a structure. Cell reference points (neurons) are forced to move close to the decision surface by successively omit ting input data that do not find a neuron of the opposite class within a circle of shrinking radius . This simulates habituation to frequent but unimportant stimuli and admits problem solving with fewer neurons. Simple estimates for the optimal shrinking schedule and result s of illustrative runs are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Metric Adaptation for Optimal Feature Classification in Learning Vector Quantization Applied to Environment Detection

The paper deals with the concept of relevance learning in learning vector quantization. Recent approaches are considered: the generalized learning vector quantization as well as the soft learning vector quantization. It is shown that relevance learning can be included in both methods obtaining similar structured learning rules for prototype learning as well as relevance factor adaptation. We sh...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Average Competitive Learning Vector Quantization

We propose a new algorithm for vector quantization:Average Competitive Learning Vector Quantization(ACLVQ). It is a rather simple modification of the classical Competitive Learning Vector Quantization(CLVQ). This new formulation gives us similar results for the quantization error to those obtained by the CLVQ and reduce considerably the computation time to achieve the optimal quantizer. We esta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1992